qd.numerics¶
This module contains additional numerical functions.
sampling¶
This module contains functions related to sampling and DOEs.
-
qd.numerics.sampling.
uniform_lhs
(nSamples, variables, **kwargs)¶ Do a uniform Latin Hypercube Sampling
- Parameters
- nSamplesint
number of samples to draw
- variablesdict(str, tuple(lower, upper) )
variable dictionary, the key must be the name whereas the value must be a tuple. The first value of the tuple is the lower bound for the variable and the second one is the upper bound
- **kwargs
arguments passed on to diversipy.hycusampling.maximin_reconstruction
- Returns
- column_nameslist(str)
list with the column names for the LHS
- samplesnp.ndarray
numpy array with latin hypercube samples. Shape is nSamples x len(variables).
Examples
>>> from qd.numerics.sampling import uniform_lhs >>> >>> variables = {'length':[0,10], 'angle':[-3,3]} >>> labels, data = uniform_lhs(nSamples=100, variables=variables) >>> labels ['angle', 'length'] >>> data.shape (100, 2) >>> data.min(axis=0) array([-2.98394928, 0.00782609]) >>> data.max(axis=0) array([ 2.8683843 , 9.80865352])